рассчитать вероятность выигрыша

Рассчитать вероятность выигрыша? Все просто!

Можно ли выиграть в лотерею? Какие шансы угадать нужное количество чисел и получить джекпот или приз младшей категории? Вероятность выигрыша легко просчитывается, любой желающий может сделать это самостоятельно.

Как вообще считается вероятность выигрыша в лотерею?

Числовые лотереи проводятся по определенным формулам и шансы каждого события (выигрыша той или иной категории) рассчитываются математически. Причем эта вероятность вычисляется для любого нужного значения, будь то «5 из 36», «6 из 45», или «7 из 49» и она не меняется, так как зависит только от общего количества чисел (шаров, номеров) и того, сколько из них надо угадать.

Например, для лотереи «5 из 36» вероятности всегда следующие

  • угадать два числа — 1 : 8
  • угадать три числа — 1 : 81
  • угадать четыре числа — 1 : 2 432
  • угадать пять чисел — 1 : 376 992

Другими словами — если отметить в билете одну комбинацию (5 номеров), то шанс угадать «двойку» всего 1 из 8. А вот «пять» номеров поймать гораздо сложнее, это уже 1 шанс из 376 992. Именно такое (376 тысяч) количество всевозможных комбинаций существует в лотерее «5 из 36» и гарантированно в ней выиграть можно, если только заполнить их все. Правда, сумма выигрыша в этом случае не оправдает вложений: если билет стоит 80 рублей, то отметить все комбинации будет стоить 30 159 360 рублей. Джекпот обычно намного меньше.

В общем, все вероятности давно известны, всего и остается, что их найти или рассчитать самостоятельно, при помощи соответствующих формул.

Для тех, кому искать лень, приведем вероятности выигрыша для основных числовых лотерей Столото — они представлены в этой таблице

Сколько чисел надо угадатьшансы в 5 из 36шансы в 6 из 45шансы в 7 из 49
21:81:7
31:811:451:22
41:24321:7331:214
51:376 9921:34 8081:4751
61:8 145 0601:292 179
71:85 900 584

Также, информация по вероятностям в основных числовых лотереях есть по этой ссылке.

Эти же вероятности можно рассчитать самостоятельно при помощи нашего лото-виджета «Расчет вероятности выигрыша» для этого не требуется работать с формулами, надо всего лишь менять исходные значения (числовая формула лотереи и кол-во угадываемых номеров)

Необходимые пояснения

Лото-виджет позволяет рассчитывать вероятности выигрыша для лотерей с одним лототроном (без бонусных шаров) или с двумя лототронами. Также можно просчитать вероятности развернутых ставок

Расчет вероятности для лотерей с одним лототроном (без бонусных шаров)

Используются только первые два поля, в которых числовая формула лотереи, например: — «5 из 36», «6 из 45», «7 из 49». В принципе, можно просчитать почти любую мировую лотерею. Есть только два ограничения: первое значение не должно превышать 30, а второе — 99.

Если в лотерее не используются дополнительные номера*, то после выбора числовой формулы остается нажать кнопку рассчитать и результат готов. Не важно, вероятность какого события вы хотите узнать – выигрыш джекпота, приз второй/третьей категории или просто выяснить, сложно ли угадать 2-3 номера из нужного количества – результат высчитывается почти моментально!

Примеры. Вероятности выигрыша главного приза для лотерей:

«5 из 36» (Гослото, Россия) – 1:376 922

«6 из 45» (Гослото, Россия; Saturday Lotto, Австралия; Lotto, Австрия) — 1:8 145 060

«6 из 49» (Спортлото, Россия; La Primitiva, Испания; Lotto 6/49, Канада) — 1:13 983 816

«6 из 52» (Super Loto, Украина; Illinois Lotto, США; Mega TOTO, Малазия) — 1:20 358 520

«7 из 49» (Гослото, Россия; Lotto Max, Канада) — 1:85 900 584

Лотереи с двумя лототронами (+ бонусный шар)

Если в лотерее используется два лототрона, то для расчета необходимо заполнить все 4 поля. В первых двух – числовая формула лотереи (5 из 36, 6 из 45 и тд), в третьем и четвертом поле отмечается количество бонусных шаров (x из n). Важно: данный расчет можно использовать только для лотерей с двумя лототронами. Если бонусный шар достается из основного лототрона, то вероятность выигрыша именно этой категории считается по-другому.

* Так как при использовании двух лототронов шанс выигрыша высчитывается перемножением вероятностей друг на друга, то для корректного расчета лотерей с одним лототроном выбор дополнительного номера по умолчанию стоит как 1 из 1, то есть не учитывается.

Примеры. Вероятности выигрыша главного приза для лотерей:

«5 из 36 + 1 из 4» (Гослото, Россия) – 1:1 507 978

«4 из 20 + 4 из 20» (Гослото, Россия) – 1:23 474 025

«6 из 42 + 1 из 10» (Megalot, Украина) – 1:52 457 860

«5 из 50 + 2 из 10» (EuroJackpot) – 1:95 344 200

«5 из 69 + 1 из 26» (Powerball, США) — 1: 292 201 338

Хорошей иллюстрацией сложности игры с двумя лототронами служит лотерея «Гослото «4 из 20». Вероятность угадать 4 числа из 20 в одном поле вполне щадящая, шанс этого — 1 из 4 845. Но, когда угадать надо выиграть оба поля… то вероятность рассчитывается их перемножением. То есть, в данном случае 4 845 умножаем на 4 845, что дает 23 474 025. Так что, простота этой лотереи обманчива, выиграть в ней главный приз сложнее, чем в «6 из 45» или «6 из 49»

Расчет вероятности (развернутые ставки)

В данном случае считается вероятность выигрыша при использовании развернутых ставок. Для примера – если в лотерее 6 из 45, отметить 8 чисел то вероятность выиграть главный приз (6 из 45) составит 1 шанс из 290 895. Пользоваться ли развернутыми ставками – решать вам. С учетом того, что стоимость их получается очень высокая (в данном случае 8 отмеченных чисел это 28 вариантов) стоит знать как это увеличивает шансы на выигрыш. Тем более, что сделать это теперь совсем просто!

И другие возможности

При помощи нашего виджета можно просчитать вероятность выигрыша и в бинго-лотереях, например, в «Русское лото». Главное, что надо учитывать, это количество ходов, отведенных на наступление выигрыша. Чтобы было понятнее: долгое время в лотерее «Русское лото» джекпот можно было выиграть в том случае если 15 чисел (в одном поле) закрывались за 15 ходов. Вероятность такого события совершенно фантастическая, 1 шанс из 45 795 673 964 460 800 (можете проверить и получить это значение самостоятельно). Именно поэтому, кстати, много лет в лотерее «Русское лото» никто не мог сорвать джекпот, и его распределяли принудительно.

20.03.2016 правила лотереи «Русское лото» были изменены. Джекпот теперь можно выиграть, если 15 чисел (из 30) закрывались за 15 ходов. Получается аналог развернутой ставки — ведь 15 чисел угадываются из 30 имеющихся! А это уже совсем другая вероятность:

И в заключение приведем вероятность выигрыша в лотереях, использующих бонусный шар из основного лототрона (наш виджет такие значения не считает). Из самых известных

Спортлото «6 из 49» (Гослото, Россия), La Primitiva «6 из 49» (Испания)

Категория «5 + бонусный шар»: вероятность 1:2 330 636

SuperEnalotto «6 из 90» (Италия)

Категория «5 + бонусный шар»: вероятность 1:103 769 105

Oz Lotto «7 из 45» (Австралия)

Категория «6 + бонусный шар»: вероятность 1:3 241 401

«5 + 1» — вероятность 1:29 602

«3 +1» — вероятность 1:87

Lotto «6 из 59» (Великобритания)

Категория «5 + 1 бонусный шар»: вероятность 1:7 509 579

Вероятность выигрыша в лотерею зависит от количества возможных комбинаций выпадения шаров и мы сейчас научимся самостоятельно их рассчитывать, а для тех, кто не хочет самостоятельно считать, в конце есть онлайн калькулятор.

Вероя́тность
— степень (относительная мера, количественная оценка) возможности наступления некоторого события.

Начнём с простого, у нас есть пять шаров:

12345

Какова вероятность угадать один шар из пяти? Она равняется \frac{1}{5} , есть лишь пять возможных комбинаций для данного набора чисел: выпадет либо 5 , либо 3 , либо 2 , либо 4 , либо 1 .

Давайте для дальнейшего удобства наши лотереи будем обозначать « k из n », а когда потребуется, будем подставлять соответствующие цифры.

Усложним правила нашей лотереи — для победы необходимо угадать «2 из 5» ( k = 2, n = 5 ). Теперь шанс угадать составляет \frac{1}{10} , так как есть десять возможных комбинаций, вот они:

12
13
14
15
23
24
25
34
35
45

Важно отметить, что для выигрыша в лотерею порядок выпадения чисел в каждой комбинации не имеет значения.

В теории вероятностей вышеприведённые пять шаров на самом деле являются множеством чисел от 1 до 5. Множество обозначается фигурными скобками { }, а каждая отдельная комбинация называется сочетанием.

В комбинаторике сочетанием k из n элементов называется комбинация, содержащая k элементов, выбранных из множества, содержащего n различных элементов.

В сочетаниях не учитывается порядок элементов, \{1, 2\} и \{2, 1\} считаются одинаковыми.

Теперь всё это мы можем записать математически:

У нас есть множество из 5 шаров \{1, 2, 3, 4, 5\} . И есть 10 сочетаний, которые можно составить из 5 по 2 шара:

\{1, 2\}
\{1, 3\}
\{1, 4\}
\{1, 5\}
\{2, 3\}
\{2, 4\}
\{2, 5\}
\{3, 4\}
\{3, 5\}
\{4, 5\}

Число всех сочетаний из n элементов по k элементов в каждом обозначается C_{n}^{k} (от начальной буквы французского слова “combinasion”, что значит “сочетание”) и читается как «число сочетаний из n элементов по k». В нашем случае C_{5}^{2} — число сочетаний из 5 по 2 равно 10.

Число сочетаний

Число сочетаний рассчитывается по формуле:

C_{n}^{k} = \frac{n!}{k!(n-k)!}

n! и k! — это факториалы соответствующих чисел n и k . Факториал натурального числа n это произведение всех натуральных чисел от 1 до n включительно. Например, факториал числа 5 равен 5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120 .

Давайте проверим наш результат для лотереи 2 из 5:

C_{5}^{2} = \frac{5!}{2!(5-2)!}= \frac{5!}{2!\cdot3!} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{1 \cdot 2 \cdot 1 \cdot 2 \cdot 3}

Смотрите, мы можем сократить делимое и делитель на (n-k)! , я выделил скобками, чтобы было понятней:

\frac{(1 \cdot 2 \cdot 3) \cdot 4 \cdot 5}{1 \cdot 2 \cdot ( 1 \cdot 2 \cdot 3)} = \frac{1 \cdot 2 \cdot 3}{1 \cdot 2 \cdot 3} \cdot \frac{ 4 \cdot 5}{1 \cdot 2} = \frac{20}{2} = 10

Обратите внимание, что после того как мы сократили делимое и делитель, у нас осталось по два числа в делимом и делителе, а точнее по k чисел. В делимом это произведение двух самых больших чисел из n , а в делителе факториал числа k . И если вы хотите посчитать вероятность выигрыша, вам не надо считать полностью факториалы, а достаточно перемножить k самых больших элементов из n и разделить на факториал k .

Давайте посчитаем количество комбинаций для лотереи «Гослото «6 из 45»:

C_{45}^{6} = \dfrac{45!}{6!(45-6)!} = \dfrac{45\cdot44\cdot43\cdot42\cdot41\cdot40}{6\cdot5\cdot4\cdot3\cdot2\cdot1} = \dfrac{5 864 443 200}{720} = {8 145 060}

Весь набор сочетаний — это полная система. Если вы купите билеты со всеми комбинациями, то вы гарантированно выиграете.

Вероятность выигрыша

Теперь перейдем к вероятности выигрыша, если вы покупаете билет лотереи «Гослото «6 из 45» с одной комбинацией, то вероятность у вас 1 к 8 145 060. Вы взяли 2 билета с разными комбинациями — ваши шансы равны 2 к 8 145 060 или 1 к 4 072 530. Взяли 10 билетов, но везде записали одну и ту же комбинацию — ваши шансы снова 1 к 8 145 060. Таким образом, вероятность — это отношение количества ваших уникальных комбинаций к общему количеству комбинаций.

Если вы играете в лотерею, в которой надо угадать правильно числа в двух игровых полях, например, в американскую лотерею Powerball «5 из 69 + 1 из 26», то вам необходимо перемножить количество комбинаций «5 из 69» на «1 из 26».

C_{69}^{5} = \dfrac{69!}{5!(69-5)!} = \dfrac{69\cdot68\cdot67\cdot66\cdot65}{5\cdot4\cdot3\cdot2\cdot1} = \dfrac{1 348 621 560}{120} = {11 238 513}
C_{26}^{1} = \dfrac{26!}{1!(26-1)!} = \dfrac{26}{1} = \dfrac{26}{1} = {26}
11 238 513\cdot26 = 292 201 338

«Гослото «4 из 20»

В российской лотерее «Гослото «4 из 20» для выигрыша суперприза необходимо в двух полях угадать по «4 из 20», вычисляем количество комбинаций для одного поля:

C_{20}^{4} = \dfrac{20!}{4!(20-4)!} = \dfrac{20\cdot19\cdot18\cdot17}{4\cdot3\cdot2\cdot1} = \dfrac{116 280}{24} = {4 845}

Получаем 4 845 комбинаций, вероятность угадать «4 из 20» равна 1 к 4 845, но так как нам необходимо два раза угадать, то мы перемножаем вероятности, чтобы получить количество комбинаций для двух полей:

\frac{1}{4845}\cdot\frac{1}{4845} =\frac{1}{23 474 025}

Как мы видим, вероятность выиграть в «Гослото «4 из 20» меньше чем в «Гослото «6 из 45», 1 к 23 миллионам против 1 к 8 миллионам.

Но это хотя бы реально, давайте взглянем на правила российской лотереи «Русское лото»:

«Русское лото»

В мешок загружают бочонки, пронумерованные от 1 до 90. Ведущий достает бочонки по одному и называет их номера. В 1-м туре выигрывают билеты, в которых 5 чисел в любой из шести горизонтальных строк раньше других совпали с номерами бочонков, извлеченных из мешка. Во 2-м туре выигрывают билеты, в которых все 15 чисел в любом из полей раньше других совпали с номерами бочонков, извлеченных из мешка. Если у вас на пятнадцатом ходу все пятнадцать чисел одного из двух игровых полей билета (верхнего или нижнего) совпадут с номерами бочонков, извлеченных из мешка, — вы выиграли Джекпот.

Получается, что на 15-ом ходу мы должны «угадать» «15 из 90». Слово угадать взято в кавычки, так как мы не выбираем числа в этой лотерее, в отличие от других, в «Русском лото» цифры уже выбраны. Давайте оценим вероятность угадать «15 из 90»:

C_{90}^{15} = \dfrac{90!}{15!(90-15)!} = \dfrac{90\cdot89\cdot88\cdot87\cdot86\cdot85\cdot84\cdot83\cdot82\cdot81\cdot80\cdot79\cdot78\cdot77\cdot76}{15\cdot14\cdot13\cdot12\cdot11\cdot10\cdot9\cdot8\cdot7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1} = \dfrac{59 885 829 008 610 350 000 000 000 000}{1 307 674 368 000} = {45 795 673 964 460 820}

Википедия подсказала мне это слово — квадриллио́н. Вероятность выиграть джекпот в Русском лото один к сорока пяти квадриллионам. Помните задачу о зёрнах на шахматной доске? Эта цифра такого же порядка, ну может раз в 400 поменьше. Это астрономическая цифра, нереальная.

Когда вы играете в обычную лотерею, например «6 из 45», вы заполняете билет и ваша комбинация участвует в розыгрыше. В Русском лото вы не заполняете билет, вы покупаете билет с уже готовой комбинацией чисел. Было бы честно, если бы вы могли выбрать одну свою комбинацию из 45 квадриллионов, но вы не сможете, так как никто и никогда не сможет напечатать такое количество билетов для одного тиража.

Но давайте пойдём дальше оценивать вероятности. Следующая лотерея «Гослото «5 из 36». Правила нам говорят следующее:

«Гослото «5 из 36»

Выберите от пяти чисел в диапазоне от 1 до 36 в поле 1 и от одного числа в диапазоне от 1 до 4 в поле 2. Угадав 5 чисел в поле 1 и 1 число в поле 2 , вы получаете суперприз. Угадав только 5 чисел в поле 1 , вы получаете выигрыш категории «приз».

Для выигрыша суперприза необходимо угадать «5 из 36 и 1 из 4», смотрим:

C_{36}^{5} = \dfrac{36!}{5!(36-5)!} = \dfrac{36\cdot35\cdot34\cdot33\cdot32}{5\cdot4\cdot3\cdot2\cdot1} = \dfrac{45 239 040}{120} = {376 992}
C_{4}^{1} = \dfrac{4!}{1!(4-1)!} = \dfrac{4}{1} = \dfrac{4}{1} = {4}
376 992\cdot4 = 1 507 968

Один к полутора миллионам, шансы есть. Посмотрим вероятность выиграть приз при угадывании «5 из 36»:

C_{36}^{5} = \dfrac{36!}{5!(36-5)!} = \dfrac{36\cdot35\cdot34\cdot33\cdot32}{5\cdot4\cdot3\cdot2\cdot1} = \dfrac{45 239 040}{120} = {376 992}

Шансы ещё выше.

«6 из 36»

Следующая лотерея «6 из 36», здесь вы не сможете самостоятельно выбрать комбинацию, придётся покупать что предложат. Смотрим:

C_{36}^{6} = \dfrac{36!}{6!(36-6)!} = \dfrac{36\cdot35\cdot34\cdot33\cdot32\cdot31}{6\cdot5\cdot4\cdot3\cdot2\cdot1} = \dfrac{1 402 410 240}{720} = {1 947 792}

«Гослото «7 из 49»

C_{49}^{7} = \dfrac{49!}{7!(49-7)!} = \dfrac{49\cdot48\cdot47\cdot46\cdot45\cdot44\cdot43}{7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1} = \dfrac{432 938 943 360}{5 040} = {85 900 584}

Лотерея «Рапидо»

Теперь перейдём к экзотическим лотереям. Лотерея «Рапидо». Правила говорят, что для выигрыша суперприза:

Вам надо угадать 8 неповторяющихся чисел от 1 до 20 в первой части игрового поля и одно число от 1 до 4 — во второй части.

Получаем «8 из 20 и 1 из 4»

C_{20}^{8} = \dfrac{20!}{8!(20-8)!} = \dfrac{20\cdot19\cdot18\cdot17\cdot16\cdot15\cdot14\cdot13}{8\cdot7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1} = \dfrac{5 079 110 400}{40 320} = {125 970}
C_{4}^{1} = \dfrac{4!}{1!(4-1)!} = \dfrac{4}{1} = \dfrac{4}{1} = {4}
125 970\cdot4 = 503 880

Вероятность выигрыша в «Рапидо» составляет 1 к 503 880.

Лотерея «Зодиак»

В лотерее «Зодиак» необходимо угадать 4 числа: первое — от 1 до 31 включительно, второе — от 1 до 12 включительно, третье — от 0 до 99 включительно и четвертое — от 1 до 12 включительно. Мы получаем вероятности 1 из 31, 1 из 12, 1 из 100 (так как от 0 до 99 включительно) и снова 1 из 12. Перемножаем эти вероятности:

\frac{1}{31}\cdot\frac{1}{12}\cdot\frac{1}{100}\cdot\frac{1}{12} =\frac{1}{446 400}

Вероятность выиграть суперприз в лотерею «Зодиак» составляет 1 к 446 400.

Лотерея «Дуэль»

Комбинация тиража состоит из четырех чисел: два числа (в диапазоне от 1 до 26) для первого поля и два числа (в диапазоне от 1 до 26) — для второго.

Чтобы выиграть суперприз мы должны угадать «2 из 26 и 2 из 26»:

C_{26}^{2} = \dfrac{26!}{2!(26-2)!} = \dfrac{26\cdot25}{2\cdot1} = \dfrac{650}{2} = {325}
C_{26}^{2} = \dfrac{26!}{2!(26-2)!} = \dfrac{26\cdot25}{2\cdot1} = \dfrac{650}{2} = {325}
325\cdot325 = 105 625

Вероятность выиграть суперприз в лотерею «Дуэль» составляет 1 к 105 625.

А ещё вы можете посмотреть на вероятность выиграть в лотерею при использовании развёрнутых ставок.

Оставьте ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *